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Overview

Astrophysical context

energy input from cosmic feedback (black holes, supernovae)

Mathematical model

solving T(r) & ρ(r) structure of hot gas in clusters of galaxies

Gas cooling

exploring the energy impact of gas loss via cooling

Summary
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Generic details

Mathematical model construction via solution of (coupled)
di�erential equation(s): deSolve package

Multiple evaluation and capture of results over a grid of
models: plyr package

Visualization of structured data: ggplot2 package

Good demonstration of R's powerful capabilities in easily
combining numerical analysis with structured data handling and
visualization

→ rapid prototyping pipeline

http://desolve.r-forge.r-project.org/
http://plyr.had.co.nz/
http://cran.r-project.org/web/packages/ggplot2/
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Clusters of galaxies

Clusters of galaxies are the largest gravitationally bound objects
in the Universe; 1�2 Mpc radius (∼ 5 Ö 1022m):

Typical mass composition

∼ 82% dark matter

∼ 15% hot gas (∼ 107−8 K,
ρ ∼ 10−3 cm−3) → emits

X-rays (shown in blue)

∼ 3% stars (mostly in the
galaxies)

Abell 1689 galaxy cluster
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Cosmic feedback

The Universe expands & cools → stars form and material
pulled into super-massive black holes at the centre of galaxies

triggers black hole outbursts (left) and supernova explosions

(right) → inject energy into the surrounding gas

cooling is (partially) regulated in a negative feedback cycle

→ the details of this feedback cycle are poorly understood
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Hot gas in galaxy clusters

Hot gas accounts for majority of normal matter (`baryons') in
galaxy clusters

retains record of past feedback (non-gravitational heating) in

its temperature and density structure

gas temperature and density structure can be mapped from its

X-ray emission (e.g. Sanderson & Ponman, 2010)

The gas is approximately in hydrostatic equilibrium in the
gravitational potential

when �uid pressure balances gravity, e.g. within a stable star

http://adsabs.harvard.edu/abs/2010MNRAS.402...65S
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Hydrostatic equilibrium

Thermal pressure balances gravity:

dPgas

dr
= −GMtotal(< r)

r 2
ρgas

P = ρgaskBT

⇒ can recast in terms of dT
dr

and dρgas
dr

Ignore self-gravity of gas; dark matter dominates total mass

Can solve this di�erential equation using the ode function in
the deSolve R package

http://desolve.r-forge.r-project.org/
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Binding energy & excess energy

Binding energy is simply the energy needed to `unbind' a gas
particle (i.e. move it an in�nite distance away):

BE = gravitational energy − thermal energy

Any extra energy, injected by cosmic feedback would lower BE,
by reducing the extra energy needed for unbinding

But. . . need a suitable baseline reference model for comparison

must compare observed & baseline model BE within the same

enclosed gas mass (not radius!)
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Simple, self-similar model

Gravity is a scale-free force: big things should resemble scaled
up versions of small things → self-similarity

But, `baryon' physics (i.e. cosmic feedback) breaks symmetry:
introduces characteristic scale(s); smaller things a�ected more

The self-similar baseline model assumes that gas traces mass:
i.e. constant gas fraction

fgas =
Mgas(< r)

Mtotal(< r)
= 0.13

0.13 is roughly 90% of the gas fraction of the whole Universe
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Thermodynamic structure of self-similar model

Need to re-arrange a mass of gas (Mgas) in the same gravitational
potential, with a constant gas fraction, fgas = 13%

Mgas = fgas ×Mtot

ρgas(r) = fgas × ρtotal(r)

Assume an outer boundary condition of dlnK
dlnr

= 1.1, motivated by
theoretical models of galaxy cluster formation (e.g. Tozzi &
Norman, 2001)

‘entropy′, K =
kBT

ρ
2
3
gas

http://adsabs.harvard.edu/abs/2001ApJ...546...63T
http://adsabs.harvard.edu/abs/2001ApJ...546...63T
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Self-similar vs. observed model
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Observed model gas is hotter & less dense → higher entropy
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Spatial variation in excess energy
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Radius increases to the right; 1 curve per cluster; self-similar ref. model

Suggests a centrally concentrated heating source
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Cooling vs. heating

Gas cools & condenses to (mostly) form stars

con�ned to inner regions, where gas entropy is lowest

gas �ows in from larger radii to replace it

Self-similar model ignores cooling: will overestimate the
observed excess energy

Model generalized to allow loss of gas due to cooling

gas mass distribution is `truncated' by a given amount

remaining gas rearranged in hydrostatic equilibrium
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Truncated gas mass model

Convective stability ⇒ entropy is monotone function of radius

K (Mgas) fully speci�es gas in hydrostatic equilibrium, for a

given gravitational potential

Truncate K (Mgas) by some mass of gas (assumed cooled out)

→ de�nes new central entropy level: inner boundary condition

truncated gas mass redistributed within the same potential

Solve coupled di�erential equations (Voit et al., 2002):

dPgas

dr
= −GMtotal(< r)

r 2
ρgas (1)

dMgas

dr
= 4πr 2 ρgas (2)

http://adsabs.harvard.edu/abs/2002ApJ...576..601V
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Cooling (truncated) vs. self-similar model

Temperature (keV) Gas density (cm−3)

Gas entropy  (keV cm2) Gas fraction
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Lowest entropy gas is removed (would form stars); remaining gas
rearranged in hydrostatic equilibrium: ends up hotter → mimics heating
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E�ect of cooling on binding energy

Entropy is a monotone function of radius ⇒ cooling
(truncation) removes the most tightly bound gas

binding energy of remaining gas is lower

Gas mass truncated (Solar) Excess energy (keV/particle)
- (Self-similar) 1.96

1e10 1.96
1e11 1.92
5e12 1.05

Excess binding energy of this observed galaxy cluster vs.
truncation of 5 Ö 1012 Solar masses is almost halved

`correct' truncation level needs to be based on the stellar mass

within each cluster → future work
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Conclusions

Measured mean excess binding energy of gas in galaxy clusters
compared to baseline `Self similar' model & explored e�ect of
cooling, by solving (coupled) di�erential equation(s)

Initial results favour centrally concentrated heating source:
Active Galactic Nucleus (AGN) in central brightest galaxy,
powered by super-massive black hole (∼ 109 Solar mass)

Further development of the model needed to understand the
impact of both cooling and the epoch of heating

R enables smooth integration of mathematical modelling with

structured data manipulation and visualization: deSolve, plyr &
ggplot2 packages

http://desolve.r-forge.r-project.org/
http://plyr.had.co.nz/
http://cran.r-project.org/web/packages/ggplot2/
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Contact details

Alastair Sanderson: http://www.sr.bham.ac.uk/~ajrs
ajrs@star.sr.bham.ac.uk

Birmingham R User Meeting (BRUM) (co-organizer)

www.birminghamR.org

http://www.sr.bham.ac.uk/~ajrs
mailto:ajrs@star.sr.bham.ac.uk
http://www.birminghamR.org
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Acknowledgements & references

These slides were written as a beamer presentation in (Emacs) org mode

Image credits

Abell 1689 galaxy cluster (X-ray: NASA/CXC/MIT/E.-H Peng et al; Optical:
NASA/STScI)

Centaurus A galaxy (X-ray: NASA/CXC/CfA/R.Kraft et al.; Submillimeter:
MPIfR/ESO/APEX/A.Weiss et al.; Optical: ESO/WFI)

M82 galaxy (X-ray: NASA/CXC/JHU/D.Strickland; Optical:
NASA/ESA/STScI/AURA/The Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ.
of AZ/C. Engelbracht)
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