Alastair Sanderson

School of Physics & Astronomy, University of Birmingham, UK

2012-06-15

Thanks to Trevor Ponman (U. Birmingham)

2012 useR! conference

- Introduction
- Astrophysical context
- Mathematical mode
- Gas cooling
- Summary

Overview

- Astrophysical context
 - energy input from cosmic feedback (black holes, supernovae)

- Mathematical model
 - solving $T(r) \& \rho(r)$ structure of hot gas in clusters of galaxies
- Gas cooling
 - exploring the energy impact of gas loss via cooling
- Summary

Generic details

 Mathematical model construction via solution of (coupled) differential equation(s): deSolve package

- Multiple evaluation and capture of results over a grid of models: plyr package
- Visualization of structured data: ggplot2 package
- Good demonstration of R's powerful capabilities in easily combining numerical analysis with structured data handling and visualization
 - → rapid prototyping pipeline

Outline

- Astrophysical context

 Clusters of galaxies are the largest gravitationally bound objects in the Universe; 1–2 Mpc radius ($\sim 5 \times 10^{22} \mathrm{m}$):

Typical mass composition

- \sim 82% dark matter
- $\sim 15\%$ hot gas ($\sim 10^{7-8}$ K, $\rho \sim 10^{-3} \text{ cm}^{-3}) \rightarrow \text{emits}$ X-rays (shown in blue)
- $\bullet \sim 3\%$ stars (mostly in the galaxies)

Abell 1689 galaxy cluster

- ullet The Universe expands & cools o stars form and material pulled into super-massive black holes at the centre of galaxies
 - triggers black hole outbursts (left) and supernova explosions (right) \rightarrow inject energy into the surrounding gas
 - cooling is (partially) regulated in a negative feedback cycle
 - → the details of this feedback cycle are poorly understood

Hot gas in galaxy clusters

- Hot gas accounts for majority of normal matter ('baryons') in galaxy clusters
 - retains record of past feedback (non-gravitational heating) in its temperature and density structure

- gas temperature and density structure can be mapped from its X-ray emission (e.g. Sanderson & Ponman, 2010)
- The gas is approximately in hydrostatic equilibrium in the gravitational potential
 - when fluid pressure balances gravity, e.g. within a stable star

Hydrostatic equilibrium

• Thermal pressure balances gravity:

$$\frac{dP_{\rm gas}}{dr} = -\frac{GM_{\rm total}(< r)}{r^2} \, \rho_{\rm gas}$$

$$P = \rho_{\rm gas} k_B T$$

- \Rightarrow can recast in terms of $\frac{dT}{dr}$ and $\frac{d\rho_{\rm gas}}{dr}$
- Ignore self-gravity of gas; dark matter dominates total mass
- Can solve this differential equation using the *ode* function in the deSolve R package

 Binding energy is simply the energy needed to 'unbind' a gas particle (i.e. move it an infinite distance away):

Mathematical model

 $BE = gravitational\ energy - thermal\ energy$

- Any extra energy, injected by cosmic feedback would lower BE, by reducing the extra energy needed for unbinding
- But ... need a suitable baseline reference model for comparison
 - must compare observed & baseline model BE within the same enclosed gas mass (not radius!)

Mathematical model

- Mathematical model

Simple, self-similar model

- Gravity is a scale-free force: big things should resemble scaled up versions of small things → self-similarity
- But, 'baryon' physics (i.e. cosmic feedback) breaks symmetry: introduces characteristic scale(s); smaller things affected more
- The self-similar baseline model assumes that gas traces mass:
 i.e. constant gas fraction

$$f_{gas} = \frac{M_{gas}(< r)}{M_{total}(< r)} = 0.13$$

• 0.13 is roughly 90% of the gas fraction of the whole Universe

Need to re-arrange a mass of gas $(M_{\rm gas})$ in the same gravitational potential, with a constant gas fraction, $f_{\rm gas}=13\%$

$$M_{\rm gas} = f_{\rm gas} \times M_{
m tot}$$

$$ho_{
m gas}(r) = f_{
m gas} imes
ho_{
m total}(r)$$

Assume an **outer** boundary condition of $\frac{dlnK}{dlnr} = 1.1$, motivated by theoretical models of galaxy cluster formation (e.g. Tozzi & Norman, 2001)

'entropy',
$$K = \frac{k_B T}{\rho_{\text{gas}}^{\frac{2}{3}}}$$

Self-similar vs. observed model

• Observed model gas is hotter & less dense \rightarrow higher entropy

Spatial variation in excess energy

- Radius increases to the right; 1 curve per cluster; self-similar ref. model
- Suggests a centrally concentrated heating source

Outline

- Gas cooling

Cooling vs. heating

- Gas cools & condenses to (mostly) form stars
 - confined to inner regions, where gas entropy is lowest

- gas flows in from larger radii to replace it
- Self-similar model ignores cooling: will overestimate the observed excess energy
- Model generalized to allow loss of gas due to cooling
 - gas mass distribution is 'truncated' by a given amount
 - remaining gas rearranged in hydrostatic equilibrium

Truncated gas mass model

- ullet Convective stability \Rightarrow entropy is monotone function of radius
 - $K(M_{\rm gas})$ fully specifies gas in hydrostatic equilibrium, for a given gravitational potential
- ullet Truncate $K(M_{
 m gas})$ by some mass of gas (assumed cooled out)
 - ullet ightarrow defines new central entropy level: inner boundary condition
 - truncated gas mass redistributed within the same potential
- Solve coupled differential equations (Voit et al., 2002):

$$\frac{dP_{\rm gas}}{dr} = -\frac{GM_{\rm total}(< r)}{r^2} \rho_{\rm gas} \tag{1}$$

$$\frac{dM_{\rm gas}}{dr} = 4\pi r^2 \,\rho_{\rm gas} \tag{2}$$

Cooling (truncated) vs. self-similar model

 Lowest entropy gas is removed (would form stars); remaining gas rearranged in hydrostatic equilibrium: ends up hotter → mimics heating

- Entropy is a monotone function of radius ⇒ cooling (truncation) removes the most tightly bound gas
 - binding energy of remaining gas is lower

Gas mass truncated (Solar)	Excess energy (keV/particle)
- (Self-similar)	1.96
1e10	1.96
1e11	1.92
5e12	1.05

- Excess binding energy of this observed galaxy cluster vs. truncation of 5 imes 10¹² Solar masses is almost halved
 - 'correct' truncation level needs to be based on the stellar mass within each cluster \rightarrow future work

- Summary

Conclusions

- Measured mean excess binding energy of gas in galaxy clusters compared to baseline 'Self similar' model & explored effect of cooling, by solving (coupled) differential equation(s)
- Initial results favour centrally concentrated heating source: Active Galactic Nucleus (AGN) in central brightest galaxy, powered by super-massive black hole ($\sim 10^9$ Solar mass)
- Further development of the model needed to understand the impact of both cooling and the epoch of heating
- R enables smooth integration of mathematical modelling with structured data manipulation and visualization: deSolve, plyr & ggplot2 packages

Alastair Sanderson: http://www.sr.bham.ac.uk/~ajrs ajrs@star.sr.bham.ac.uk

Birmingham R User Meeting (BRUM) (co-organizer)

Mathematical model

www.birminghamR.org

Acknowledgements & references

These slides were written as a beamer presentation in (Emacs) org mode

Image credits

- Abell 1689 galaxy cluster (X-ray: NASA/CXC/MIT/E.-H Peng et al; Optical: NASA/STScI)
- Centaurus A galaxy (X-ray: NASA/CXC/CfA/R.Kraft et al.; Submillimeter: MPIfR/ESO/APEX/A.Weiss et al.; Optical: ESO/WFI)
- M82 galaxy (X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ESA/STScI/AURA/The Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht)

References

- Sanderson & Ponman, 2010, Mon. Not. of Royal Astr. Soc., 402, 65–72 (ADS | DOI)
- Tozzi & Norman, 2001, Astrophysical Journal, 546, 63-84 (ADS | DOI)
- Voit, Bryan, Balogh & Bower, 2002, Astrophysical Journal, 576, 601-624 (ADS | DOI)